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Min-Sum Set Cover



Min-Sum Set Cover [Feige et al. 02, 04]

•  Input: Ground set (universe) =  and family of subsets 

 where each , such that  

• Task: Find the permutation of the subsets that minimizes the sum of the 
covering times of the ground elements


• If an element is covered by the th element in the permutation, we say 
that it is covered at time 

𝒰 {e1, …, en}

ℱ = {S1, …, Sm} Si ⊆ 𝒰
n

⋃
i=1

Si = 𝒰

j
j



Greedy Algorithm 

• Greedy Rule: Choose subset that covers the 
maximum number of uncovered elements 

• Same greedy algorithm we used for “classical”
set cover problem. 

• What approximation factor does it achieve for 
Min-Sum Set Cover problem?
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Greedy Algorithm 

• Thm [Feige et al. 02, 04] :    
Greedy Algorithm is a 4-approximation 
algorithm for Min-Sum Set Cover 
 
          Proof: Based on histograms. 
 
Original proof was LP-based, later proof was histogram based.  
We’ll present version of histogram proof used in [Happach et al. 
2022] to prove a more general result.
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Reformulation of Min-Sum Set 
Cover Problem in terms of “utility” 
• Let  

• Utility: Define  s.t. for ,  

 =  

         = # elts of  covered by subsets  such that  

• For permutation  of , , define  = set of first  items in  

• Min-Sum Set Cover: Find permutation   of elements of  
minimizing 
                      

I = {1,…, m}
u : 2I → ℛ≥0 I′￼ ⊆ I

u(I′￼) |⋃
k∈I′￼

Sk |

𝒰 Sk k ∈ I′￼

π I i ≥ 0 πi i π
π I

∑m
i=1 i × (u(πi) − u(πi−1))
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Greedy Algorithm 
• Greedy Rule: If  is the set of  already 

chosen for permutation, next add the item 
maximizing increase in utility  
                         
            

• Thm:   Greedy Algorithm is a 4-approximation 
algorithm for Min-Sum Set Cover Problem 
                     Proof based on histograms

I′￼ i ∈ I
k

u(I′￼∪ {k}) − u(I′￼)
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Taxicab story
• Group of friends who get in taxicab together, not all going to same 

location 
• Taxi goes to desired locations in some order, dropping off some 

passengers at each location 
• Suppose each passenger has to pay for for travel before they are dropped 

off (!) at a rate of $1 per stop, e.g., if passenger is dropped off at the 3rd 
stop, their fare is $3. 

• Driver could have each passenger pay their total fare when dropped off.   
So at stop , total amount paid to the driver is 
                  (number of people dropped off at stop )  

• Alternatively, driver could have the passengers pay as they go: each time 
the taxi stops, everyone in the taxi has to give the driver $1.  So at stop , 
amount paid to driver is 
                1 x number of people still in taxi when arrive at stop  

• Either way, driver earns the same amount of money for trip!

i
i × i

i

i
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Pf of Theorem:  
Given a permutation  of the elements in 

and a prefix  of , consisting 
of the first  sets in , 

let  

= sum of covering times of the first  items of  

π
I = {1,2,…, m} πk π

k π

r(πk) =
k

∑
i=1

i × (u(πi) − u(πi−1))

k π
9



• We’re seeking a permutation  of the elements in  that 
minimizes the sum of the covering times,  

• Total utility:        [number of elements in universe] 
Increase in utility at step :      

• Analogy to taxi: elements in  are passengers, each time step is a stop of 
taxi, being covered at step i is leaving taxi at stop i 

• Pay when covered      

 

• Pay as you go              

π I = {1,…, m}
r(π)

n = u(I)
i u(πi) − u(πi−1)

𝒰

r(π) =
m

∑
i=1

i × (u(πi) − u(πi−1))

r(π) =
m

∑
i=1

1 × (u(I) − u(πi−1))
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Let  be permutation produced by running the 
greedy algorithm. 
Let  be the permutation minimizing , i.e.,   
is an optimal solution to our Min-Sum problem 
We will prove 
Claim:  

which implies  is a 4-approx solution to our 
Min-Sum problem, proving the theorem.

G

T r() T

r(G) ≤ 4r(T)
G
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• Think of each permutation as adding subsets, step by step 


• In each step, cover more elements of , utility increases


• At start,  and at end, 


• View  as a journey from utility 0 to utility          [NOT as a journey through time!]


• In th step of , utility increases from  to 


• and analogously for optimal permutation 


• We will compare utility at start of th step of G to utility at end of th step of T 
 
 
 
 

𝒰

u(G0) = 0 u(Gm) = u(I) = n

G u(I)

i G u(Gi−1) u(Gi)

T

i j



• We will use the following lemma. 
 
Lemma:   
 

If       then   

 
 
 
 
 

u(Gi) − u(Gi−1)
u(I) − u(Gi−1)

<
1
2j

u(I) − u(Tj) >
1
2

(u(I) − u(Gi−1))

u(G0) u(I)u(Gi−1) u(Gi)



• Lemma:  If       then  


• Pf:  Assume .      By Greedy Rule, if add single item to , can’t increase utility 

                                                                                             (number of covereed elements) by more than . 


• So if add all  items in  to , can’t increase utility by more than   
 

 
 

                because  
 

                                                  by assumption 

                        because previous inequality meant that  was located to the left of the midpoint  

                                                                  between  and , or equivalently, by subtracting both sides of previous inequality from  
                                                                                                                 
                             
 

u(Gi) − u(Gi−1)
u(I) − u(Gi−1)

<
1
2j

u(I) − u(Tj) >
1
2

(u(I) − u(Gi−1))

u(Gi) − u(Gi−1)
u(I) − u(Gi−1)

<
1
2j

Gi−1

u(Gi) − u(Gi−1)

j Tj Gi−1 j * (u(Gi) − u(Gi−1))

u(Gi−1 ∪ Tj) − u(Gi−1) < j * (u(Gi) − u(Gi−1))

⇒ u(Tj) − u(Gi−1) < j * (u(Gi) − u(Gi−1) u(Tj) ≤ u(Tj ∪ Gi−1)

<
1
2

(u(I) − u(Gi−1))

⇒ u(I) − u(Tj) >
1
2

(u(I) − u(G j−1)) u(Tj)

u(Gi−1) u(I) u(I) − u(Gi−1)

u(I)u(Gi−1) u(Gi)u(G0)



Claim:  
Pf of claim: 
Consider a histogram for . 

Horizontal axis: labeled from  to  

Bar corresponding to  goes from  

             to  

of height  

Area under histogram is 

r(G) ≤ 4r(T)

T
0 u(I)

Tj

u(Tj−1) u(Tj)
j

r(T) =
m

∑
j=1

j × (u(Tj) − u(Tj−1))
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u(Tj−1) u(Tj)

j
Histogram for Opt

u(I)0



Consider a histogram for . 

Horizontal axis: labeled from  to  

Bar corresponding to  goes from  

             to  

of height  

Area under histogram is 

G
0 u(I)

Gi

u(Gi−1) u(Gi)

(u(I) − u(Gi−1)) ×
1

u(Gi) − u(Gi−1)
m

∑
i=1

1 × (u(I) − u(Gi−1)) = r(G)
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u(Gi−1) u(Gi)

Histogram for Greedy

0 u(I)

pay as you go



Consider histogram for . 

Horizontal axis: labeled from  to  

Bar corresponding to  goes from  

             to  

and height  

Area under histogram is 

G
0 u(I)

Gi

u(Gi−1) u(Gi)

(u(I) − u(Gi−1)) *
1

u(Gi) − u(Gi−1)

∑
i

1 × (u(I) − u(Gi−1)) = r(G)
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u(Gi−1) u(Gi)

Histogram for Greedy

Inverse of utility gained by Greedy in step i



Consider histogram for . 

Horizontal axis: labeled from  to  

Bar corresponding to  goes from  

             to  

of height  

Area under histogram is 

G
0 u(I)

Gi

u(Gi−1) u(Gi)

u(I) − u(Gi−1)
u(Gi) − u(Gi−1)

∑
i

1 × (u(I) − u(Gi−1)) = r(G)
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u(Gi−1) u(Gi)

Histogram for Greedy

u(I) − u(Gi−1)
u(Gi) − u(Gi−1)



Claim:  
Pf of claim (continued): 
We’ll show if shrink Greedy (brown) Histogram 
by factor of 2 in both horizontal and  
vertical directions  
(decreasing its area by 4),  
overlay it on optimal histogram, right justify,  
then it “fits” into Optimal (blue) Histogram

r(G) ≤ 4r(T)
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u(Tj−1) u(Tj)



Claim:  
Pf of claim (continued): 
Suppose not.  Suppose shrink Greedy Histogram 
by factor of 2 in horizontal and  
vertical directions, overlay it on 
optimal histogram, right justify,  
and it doesn’t fit into Optimal Histogram

r(G) ≤ 4r(T)
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Claim:  
Pf of claim (continued): 
Suppose not.  Suppose shrink Greedy Histogram 
by factor of 2 in horizontal and  
vertical directions, overlay it on 
optimal histogram, right justify,  
and it doesn’t fit into Optimal Histogram

r(G) ≤ 4r(T)
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Then a vertical bar of the shrunken Greedy (brown) histogram rises above the 
Optimal (blue) Histogram at some point.   Top left corner of the brown bar is 
above and to left of top right corner of lower blue bar. 

(xg, yg)

(xo, yo)



Then top left corner of the brown bar is above and to left 
of top right corner of lower blue bar.  

 
1
2

*
u(I) − u(Gi−1)

u(Gi) − u(Gi−1)
> j

u(I) − u(Tj) ≤
1
2

(u(I) − u(Gi−1))
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(xg, yg)

(xo, yo)

yg > yo

xo ≥ xg or equivalently u(I) − xo ≤
1
2

(u(I) − u(Gi−1))



Then top left corner of the brown bar is above and to left 
of top right corner of lower blue bar.  

But recall Lemma:


 
1
2

*
u(I) − u(Gi−1)

u(Gi) − u(Gi−1)
> j

u(I) − u(Tj) ≤
1
2

(u(I) − u(Gi−1))
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(xg, yg)

(xo, yo)

yg > yo

   

 If       then   
u(Gi) − u(Gi−1)
u(I) − u(Gi−1)

<
1
2j

u(I) − u(Tj) >
1
2

(u(I) − u(Gi−1))

Equivalent



Then top left corner of the brown bar is above and to left 
of top right corner of lower blue bar.  

But recall Lemma:


 
1
2

*
u(I) − u(Gi−1)

u(Gi) − u(Gi−1)
> j

u(I) − u(Tj) ≤
1
2

(u(I) − u(Gi−1))
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(xg, yg)

(xo, yo)

yg > yo

   

 If       then   
u(Gi) − u(Gi−1)
u(I) − u(Gi−1)

<
1
2j

u(I) − u(Tj) >
1
2

(u(I) − u(Gi−1))

CONTRADICTION!



• QED, proved that Greedy Algorithm produces a solution with sum of covering time  OPT


• NP-hard to achieve OPT, for any 


• Weighted version of Min-Sum Set Cover:  


• each subset  of elements of the universe has weight (cost)  , find  minimizing sum of 
weighted covering times: 
                   

                       where 


• Weighted Greedy algorithm (bang-for-the-buck) produces a solution with value 


• also called “pipelined set cover”     [Widom et al. 2005]

≤ 4 ×

(4 − ϵ) × ϵ > 0

Sj cj π

m

∑
i=1

c(πi) × (u(πi) − u(πi−1)) c(I′￼) = ∑
j∈I′￼

cj

≤ 4 × OPT



More general functions u
• Min-Sum Submodular Cover   


• Again, want to maximize


•     where   


• But function  can be arbitrary monotone submodular utility function 


• analogous weighted greedy algorithm:   

      Greedy rule chooses item  that maximizes bang-for-buck   


• where  is set of items chosen so far


•  also produces a solution with value OPT            [Streeter and Golovin, 2008]

m

∑
i=1

c(πi) × (u(πi) − u(πi−1)) c(I′￼) = ∑
j∈I′￼

cj

u u : 2I → ℛ≥0

j
u(I′￼∪ {j}) − u(I′￼)

cj

I′￼

≤ 4 ×



Min-sum ordering problems  
[Happach et al. 2022]

• Very general class of problems that includes all of the above min-sum  problems


• Again, want to maximize


•     where  


• Don’t require  to be submodular 
     just monotone and 


• Greedy algorithm


• Greedy rule: Chooses subset  that maximizes bang-for-buck   


• Elements in  are added to currrent permutation in arbitrary order


• produces a solution with value 4  OPT      (also holds if  is monotone submodular and )


• But may not be able to implement greedy rule in polynomial time

m

∑
i=1

c(πi) × (u(πi) − u(πi−1)) c(I′￼) = ∑
j∈I′￼

cj

u
u(∅) = 0

S
u(I′￼∪ S) − u(I′￼)
c(I′￼∪ S) − c(I′￼)

S

× c c(∅) = 0



Other min-sum set cover variants
• Minimum-Latency Set Cover   (introduced by [Hassin and Levin, 2005])


•  Change definition of covering time of element  in a permutation  of .  It’s the earliest step in the permutation at which ALL   
such that  have appeared.


• Studied in the scheduling literature.  Shown to be special case of scheduling problem with precedence constraints.


• A number of poly-time approximation algorithms, approximation is OPT


• Generalized Min-Sum Set Cover


• Have a covering requirement  for each .  Change definition of covering time of element  in a permutation  of .  It’s the 
earliest step in the permutation at which  of the  such that  have appeared.


• (no weights)


• Generalizes Min-Sum Set Cover and Min-Latency Submodular Cover


• Current best approximation achieved by poly-time algorithm is 4.642  OPT [Bansal et al. 2023]


• and there are many others generalizations of the Min-Sum problem

e ∈ 𝒰 π I j
e ∈ Sj

2 ×

k(e) e ∈ 𝒰 e π N
k(e) j e ∈ Sj

×



Stochastic Boolean Function Evaluation



SBFE Problems
❖ Stochastic Boolean Function Evaluation (SBFE)


❖ aka Sequential Testing of Boolean Functions

❖ Given representation of Boolean Function


❖ e.g.,  


❖ Need to evaluate f on initially unknown random input  


❖ `  values are independent


❖  =   (assume 0 <  < 1)


❖ Only way to determine value of  is to perform “test” which has cost  > 0


❖ Need to continue testing until have enough info to determine value of 


❖ SBFE Problem:  Given representation of , the ,  and the , determine the order in which to perform the tests so as to 
minimize the expected testing cost.  

❖ Testing order can be adaptive (choice of next test can depend on outcomes of previous tests)

f(x1, …, xn) = x1 ∨ x2 ∨ … ∨ xn

x = (x1, …, xn)

xi

pi P[xi = 1] pi

xi ci

f(x1, …, xn)

f pi ci



❖ Testing strategy corresponds to a decision tree

❖ Don’t need to output full testing strategy, just need to be able to 

determine next test to perform at each step

❖ Algorithmic problem


❖ Easy to do with unlimited computational time

❖ Question is whether it can be done efficiently 



Motivation for SBFE problems
• Database query optimization


• Aggregating information from network of sensors


• Testing components of computer chip


• Testing network connectivity


• Medical diagnosis


• . . .



Evaluation of OR function



Example:  Boolean OR

• 


•       (unit costs)


• 


• Optimal test ordering?

f(x1, …, xn) = x1 ∨ x2 ∨ x3

c1 = c2 = c3 = 1

p1 = 0.8, p2 = 0.5, p3 = 0.999



Example:  Boolean OR

• Repeat with different costs


• 


• 


• 


• Optimal test ordering?  And in general?

f(x1, …, xn) = x1 ∨ x2 ∨ x3

c1 = 5 c2 = 1 c3 = 1000

p1 = 0.8, p2 = 0.5, p3 = 0.999



Example:  Boolean OR
• Thm:  Optimal to test in increasing order of the ratio  

 
                          


• Pf: (Adjacent interchange argument.)  
                       
 
Supppose Thm doesn’t hold.  Then there exists a different ordering  that is optimal and has lower expected cost.  w.l.o.g., 
assume  is  (can renumber). 
 
There must be an index such that  

 
Consider testing using this ordering.  Let  be indicator random variable: 
         
         
 

ci

pi

π
π x1, x2, …, xn

i
ci

pi
>

ci+1

pi+1

Tj
Tj = 1 if xj is tested
Tj = 0 otherwise



• Expected cost of testing using ordering  is  
 

             by linearity of expectation 

                                                    =  P[ test  is performed when using   

                                                    = 


• Now consider new ordering  that reverses order of  and .  Analogous expression for expected cost. 
 
          
 

π

E[cost of π] = E[
n

∑
j=1

cjTj] =
n

∑
j=1

cjE[Tj]

n

∑
j=1

cj j π]

n

∑
j=1

cj

j−1

∏
k=1

(1 − pk)

π′￼ xi xi+1



• Since  is optimal, 


• Expressions differ only in th term and th term.  Subtract off common terms.


•  
 




• Divide both sides by  get 
 

 
 

 
 




• But   .    Contradiction!              

π E[ cost of π] ≤ E[cost of π′￼]

i (i + 1)

ci[(1 − p1)(1 − p2)…(1 − pi−1)] + ci+1[(1 − p1)(1 − p2)…(1 − pi−1)(1 − pi)]

≤ ci+1 [(1 − p1)(1 − p2)…(1 − pi−1)] + ci [(1 − p1)(1 − p2)…(1 − pi−1)](1 − pi+1)

(1 − p1)…(1 − pi−1)

ci + ci+1(1 − pi) ≤ ci+1 + ci(1 − pi+1)

⇒ − ci+1pi ≤ − pi+1ci

⇒
ci

pi
≤

ci+1

pi+1

ci

pi
>

ci+1

pi+1
□



W
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