
Recent Developments in
Algorithm Design

(Spring 2025)
Lecture 3: Min-Sum Set Cover and its variants, Intro to Stochastic Boolean Function

Evaluation

(Hellerstein)

Min-Sum Set Cover

Min-Sum Set Cover [Feige et al. 02, 04]

• Input: Ground set (universe) = and family of subsets

 where each , such that  

• Task: Find the permutation of the subsets that minimizes the sum of the
covering times of the ground elements

• If an element is covered by the th element in the permutation, we say
that it is covered at time

𝒰 {e1, …, en}

ℱ = {S1, …, Sm} Si ⊆ 𝒰
n

⋃
i=1

Si = 𝒰

j
j

Greedy Algorithm

• Greedy Rule: Choose subset that covers the
maximum number of uncovered elements

• Same greedy algorithm we used for “classical”
set cover problem.

• What approximation factor does it achieve for
Min-Sum Set Cover problem?

4

Greedy Algorithm

• Thm [Feige et al. 02, 04] :
Greedy Algorithm is a 4-approximation
algorithm for Min-Sum Set Cover

 Proof: Based on histograms.

Original proof was LP-based, later proof was histogram based.
We’ll present version of histogram proof used in [Happach et al.
2022] to prove a more general result.

5

Reformulation of Min-Sum Set
Cover Problem in terms of “utility”
• Let

• Utility: Define s.t. for ,

 =

 = # elts of covered by subsets such that

• For permutation of , , define = set of first items in

• Min-Sum Set Cover: Find permutation of elements of
minimizing

I = {1,…, m}
u : 2I → ℛ≥0 I′ ⊆ I

u(I′) |⋃
k∈I′

Sk |

𝒰 Sk k ∈ I′

π I i ≥ 0 πi i π
π I

∑m
i=1 i × (u(πi) − u(πi−1))

6

Greedy Algorithm
• Greedy Rule: If is the set of already

chosen for permutation, next add the item
maximizing increase in utility

• Thm: Greedy Algorithm is a 4-approximation
algorithm for Min-Sum Set Cover Problem
 Proof based on histograms

I′ i ∈ I
k

u(I′ ∪ {k}) − u(I′)

7

Taxicab story
• Group of friends who get in taxicab together, not all going to same

location
• Taxi goes to desired locations in some order, dropping off some

passengers at each location
• Suppose each passenger has to pay for for travel before they are dropped

off (!) at a rate of $1 per stop, e.g., if passenger is dropped off at the 3rd
stop, their fare is $3.

• Driver could have each passenger pay their total fare when dropped off.
So at stop , total amount paid to the driver is
 (number of people dropped off at stop)

• Alternatively, driver could have the passengers pay as they go: each time
the taxi stops, everyone in the taxi has to give the driver $1. So at stop ,
amount paid to driver is
 1 x number of people still in taxi when arrive at stop

• Either way, driver earns the same amount of money for trip!

i
i × i

i

i
8

Pf of Theorem:
Given a permutation of the elements in

and a prefix of , consisting
of the first sets in ,

let

= sum of covering times of the first items of

π
I = {1,2,…, m} πk π

k π

r(πk) =
k

∑
i=1

i × (u(πi) − u(πi−1))

k π
9

• We’re seeking a permutation of the elements in that
minimizes the sum of the covering times,

• Total utility: [number of elements in universe]
Increase in utility at step :

• Analogy to taxi: elements in are passengers, each time step is a stop of
taxi, being covered at step i is leaving taxi at stop i

• Pay when covered

• Pay as you go

π I = {1,…, m}
r(π)

n = u(I)
i u(πi) − u(πi−1)

𝒰

r(π) =
m

∑
i=1

i × (u(πi) − u(πi−1))

r(π) =
m

∑
i=1

1 × (u(I) − u(πi−1))
10

Let be permutation produced by running the
greedy algorithm.
Let be the permutation minimizing , i.e.,
is an optimal solution to our Min-Sum problem
We will prove
Claim:

which implies is a 4-approx solution to our
Min-Sum problem, proving the theorem.

G

T r() T

r(G) ≤ 4r(T)
G

11

• Think of each permutation as adding subsets, step by step

• In each step, cover more elements of , utility increases

• At start, and at end,

• View as a journey from utility 0 to utility [NOT as a journey through time!]

• In th step of , utility increases from to

• and analogously for optimal permutation

• We will compare utility at start of th step of G to utility at end of th step of T 
 
 
 
 

𝒰

u(G0) = 0 u(Gm) = u(I) = n

G u(I)

i G u(Gi−1) u(Gi)

T

i j

• We will use the following lemma. 
 
Lemma:  
 

If then  

 
 
 
 
 

u(Gi) − u(Gi−1)
u(I) − u(Gi−1)

<
1
2j

u(I) − u(Tj) >
1
2

(u(I) − u(Gi−1))

u(G0) u(I)u(Gi−1) u(Gi)

• Lemma: If then

• Pf: Assume . By Greedy Rule, if add single item to , can’t increase utility 

 (number of covereed elements) by more than .

• So if add all items in to , can’t increase utility by more than  
 

 
 

 because  
 

 by assumption 

 because previous inequality meant that was located to the left of the midpoint  

 between and , or equivalently, by subtracting both sides of previous inequality from  
  
  
 

u(Gi) − u(Gi−1)
u(I) − u(Gi−1)

<
1
2j

u(I) − u(Tj) >
1
2

(u(I) − u(Gi−1))

u(Gi) − u(Gi−1)
u(I) − u(Gi−1)

<
1
2j

Gi−1

u(Gi) − u(Gi−1)

j Tj Gi−1 j * (u(Gi) − u(Gi−1))

u(Gi−1 ∪ Tj) − u(Gi−1) < j * (u(Gi) − u(Gi−1))

⇒ u(Tj) − u(Gi−1) < j * (u(Gi) − u(Gi−1) u(Tj) ≤ u(Tj ∪ Gi−1)

<
1
2

(u(I) − u(Gi−1))

⇒ u(I) − u(Tj) >
1
2

(u(I) − u(G j−1)) u(Tj)

u(Gi−1) u(I) u(I) − u(Gi−1)

u(I)u(Gi−1) u(Gi)u(G0)

Claim:
Pf of claim:
Consider a histogram for .

Horizontal axis: labeled from to

Bar corresponding to goes from

 to

of height

Area under histogram is

r(G) ≤ 4r(T)

T
0 u(I)

Tj

u(Tj−1) u(Tj)
j

r(T) =
m

∑
j=1

j × (u(Tj) − u(Tj−1))

15

u(Tj−1) u(Tj)

j
Histogram for Opt

u(I)0

Consider a histogram for .

Horizontal axis: labeled from to

Bar corresponding to goes from

 to

of height

Area under histogram is

G
0 u(I)

Gi

u(Gi−1) u(Gi)

(u(I) − u(Gi−1)) ×
1

u(Gi) − u(Gi−1)
m

∑
i=1

1 × (u(I) − u(Gi−1)) = r(G)

16

u(Gi−1) u(Gi)

Histogram for Greedy

0 u(I)

pay as you go

Consider histogram for .

Horizontal axis: labeled from to

Bar corresponding to goes from

 to

and height

Area under histogram is

G
0 u(I)

Gi

u(Gi−1) u(Gi)

(u(I) − u(Gi−1)) *
1

u(Gi) − u(Gi−1)

∑
i

1 × (u(I) − u(Gi−1)) = r(G)

17

u(Gi−1) u(Gi)

Histogram for Greedy

Inverse of utility gained by Greedy in step i

Consider histogram for .

Horizontal axis: labeled from to

Bar corresponding to goes from

 to

of height

Area under histogram is

G
0 u(I)

Gi

u(Gi−1) u(Gi)

u(I) − u(Gi−1)
u(Gi) − u(Gi−1)

∑
i

1 × (u(I) − u(Gi−1)) = r(G)

18

u(Gi−1) u(Gi)

Histogram for Greedy

u(I) − u(Gi−1)
u(Gi) − u(Gi−1)

Claim:
Pf of claim (continued):
We’ll show if shrink Greedy (brown) Histogram
by factor of 2 in both horizontal and
vertical directions
(decreasing its area by 4),
overlay it on optimal histogram, right justify,
then it “fits” into Optimal (blue) Histogram

r(G) ≤ 4r(T)

19

u(Tj−1) u(Tj)

Claim:
Pf of claim (continued):
Suppose not. Suppose shrink Greedy Histogram
by factor of 2 in horizontal and
vertical directions, overlay it on
optimal histogram, right justify,
and it doesn’t fit into Optimal Histogram

r(G) ≤ 4r(T)

20

Claim:
Pf of claim (continued):
Suppose not. Suppose shrink Greedy Histogram
by factor of 2 in horizontal and
vertical directions, overlay it on
optimal histogram, right justify,
and it doesn’t fit into Optimal Histogram

r(G) ≤ 4r(T)

21

Then a vertical bar of the shrunken Greedy (brown) histogram rises above the
Optimal (blue) Histogram at some point. Top left corner of the brown bar is
above and to left of top right corner of lower blue bar.

(xg, yg)

(xo, yo)

Then top left corner of the brown bar is above and to left
of top right corner of lower blue bar.

1
2

*
u(I) − u(Gi−1)

u(Gi) − u(Gi−1)
> j

u(I) − u(Tj) ≤
1
2

(u(I) − u(Gi−1))
22

(xg, yg)

(xo, yo)

yg > yo

xo ≥ xg or equivalently u(I) − xo ≤
1
2

(u(I) − u(Gi−1))

Then top left corner of the brown bar is above and to left
of top right corner of lower blue bar.

But recall Lemma:

1
2

*
u(I) − u(Gi−1)

u(Gi) − u(Gi−1)
> j

u(I) − u(Tj) ≤
1
2

(u(I) − u(Gi−1))
23

(xg, yg)

(xo, yo)

yg > yo

  

 If then
u(Gi) − u(Gi−1)
u(I) − u(Gi−1)

<
1
2j

u(I) − u(Tj) >
1
2

(u(I) − u(Gi−1))

Equivalent

Then top left corner of the brown bar is above and to left
of top right corner of lower blue bar.

But recall Lemma:

1
2

*
u(I) − u(Gi−1)

u(Gi) − u(Gi−1)
> j

u(I) − u(Tj) ≤
1
2

(u(I) − u(Gi−1))
24

(xg, yg)

(xo, yo)

yg > yo

  

 If then
u(Gi) − u(Gi−1)
u(I) − u(Gi−1)

<
1
2j

u(I) − u(Tj) >
1
2

(u(I) − u(Gi−1))

CONTRADICTION!

• QED, proved that Greedy Algorithm produces a solution with sum of covering time OPT

• NP-hard to achieve OPT, for any

• Weighted version of Min-Sum Set Cover:

• each subset of elements of the universe has weight (cost) , find minimizing sum of
weighted covering times: 
  

 where

• Weighted Greedy algorithm (bang-for-the-buck) produces a solution with value

• also called “pipelined set cover” [Widom et al. 2005]

≤ 4 ×

(4 − ϵ) × ϵ > 0

Sj cj π

m

∑
i=1

c(πi) × (u(πi) − u(πi−1)) c(I′) = ∑
j∈I′

cj

≤ 4 × OPT

More general functions u
• Min-Sum Submodular Cover

• Again, want to maximize

• where

• But function can be arbitrary monotone submodular utility function

• analogous weighted greedy algorithm:  

 Greedy rule chooses item that maximizes bang-for-buck

• where is set of items chosen so far

• also produces a solution with value OPT [Streeter and Golovin, 2008]

m

∑
i=1

c(πi) × (u(πi) − u(πi−1)) c(I′) = ∑
j∈I′

cj

u u : 2I → ℛ≥0

j
u(I′ ∪ {j}) − u(I′)

cj

I′

≤ 4 ×

Min-sum ordering problems
[Happach et al. 2022]

• Very general class of problems that includes all of the above min-sum problems

• Again, want to maximize

• where

• Don’t require to be submodular 
 just monotone and

• Greedy algorithm

• Greedy rule: Chooses subset that maximizes bang-for-buck

• Elements in are added to currrent permutation in arbitrary order

• produces a solution with value 4 OPT (also holds if is monotone submodular and)

• But may not be able to implement greedy rule in polynomial time

m

∑
i=1

c(πi) × (u(πi) − u(πi−1)) c(I′) = ∑
j∈I′

cj

u
u(∅) = 0

S
u(I′ ∪ S) − u(I′)
c(I′ ∪ S) − c(I′)

S

× c c(∅) = 0

Other min-sum set cover variants
• Minimum-Latency Set Cover (introduced by [Hassin and Levin, 2005])

• Change definition of covering time of element in a permutation of . It’s the earliest step in the permutation at which ALL
such that have appeared.

• Studied in the scheduling literature. Shown to be special case of scheduling problem with precedence constraints.

• A number of poly-time approximation algorithms, approximation is OPT

• Generalized Min-Sum Set Cover

• Have a covering requirement for each . Change definition of covering time of element in a permutation of . It’s the
earliest step in the permutation at which of the such that have appeared.

• (no weights)

• Generalizes Min-Sum Set Cover and Min-Latency Submodular Cover

• Current best approximation achieved by poly-time algorithm is 4.642 OPT [Bansal et al. 2023]

• and there are many others generalizations of the Min-Sum problem

e ∈ 𝒰 π I j
e ∈ Sj

2 ×

k(e) e ∈ 𝒰 e π N
k(e) j e ∈ Sj

×

Stochastic Boolean Function Evaluation

SBFE Problems
❖ Stochastic Boolean Function Evaluation (SBFE)

❖ aka Sequential Testing of Boolean Functions

❖ Given representation of Boolean Function

❖ e.g.,

❖ Need to evaluate f on initially unknown random input

❖ ` values are independent

❖ = (assume 0 < < 1)

❖ Only way to determine value of is to perform “test” which has cost > 0

❖ Need to continue testing until have enough info to determine value of

❖ SBFE Problem: Given representation of , the , and the , determine the order in which to perform the tests so as to
minimize the expected testing cost.

❖ Testing order can be adaptive (choice of next test can depend on outcomes of previous tests)

f(x1, …, xn) = x1 ∨ x2 ∨ … ∨ xn

x = (x1, …, xn)

xi

pi P[xi = 1] pi

xi ci

f(x1, …, xn)

f pi ci

❖ Testing strategy corresponds to a decision tree

❖ Don’t need to output full testing strategy, just need to be able to

determine next test to perform at each step

❖ Algorithmic problem

❖ Easy to do with unlimited computational time

❖ Question is whether it can be done efficiently

Motivation for SBFE problems
• Database query optimization

• Aggregating information from network of sensors

• Testing components of computer chip

• Testing network connectivity

• Medical diagnosis

• . . .

Evaluation of OR function

Example: Boolean OR

•

• (unit costs)

•

• Optimal test ordering?

f(x1, …, xn) = x1 ∨ x2 ∨ x3

c1 = c2 = c3 = 1

p1 = 0.8, p2 = 0.5, p3 = 0.999

Example: Boolean OR

• Repeat with different costs

•

•

•

• Optimal test ordering? And in general?

f(x1, …, xn) = x1 ∨ x2 ∨ x3

c1 = 5 c2 = 1 c3 = 1000

p1 = 0.8, p2 = 0.5, p3 = 0.999

Example: Boolean OR
• Thm: Optimal to test in increasing order of the ratio  

 

• Pf: (Adjacent interchange argument.)  
  
 
Supppose Thm doesn’t hold. Then there exists a different ordering that is optimal and has lower expected cost. w.l.o.g.,
assume is (can renumber). 
 
There must be an index such that  

 
Consider testing using this ordering. Let be indicator random variable: 
  
  
 

ci

pi

π
π x1, x2, …, xn

i
ci

pi
>

ci+1

pi+1

Tj
Tj = 1 if xj is tested
Tj = 0 otherwise

• Expected cost of testing using ordering is  
 

 by linearity of expectation 

 = P[test is performed when using  

 =

• Now consider new ordering that reverses order of and . Analogous expression for expected cost. 
 
  
 

π

E[cost of π] = E[
n

∑
j=1

cjTj] =
n

∑
j=1

cjE[Tj]

n

∑
j=1

cj j π]

n

∑
j=1

cj

j−1

∏
k=1

(1 − pk)

π′ xi xi+1

• Since is optimal,

• Expressions differ only in th term and th term. Subtract off common terms.

•  
 

• Divide both sides by get 
 

 
 

 
 

• But . Contradiction!

π E[cost of π] ≤ E[cost of π′]

i (i + 1)

ci[(1 − p1)(1 − p2)…(1 − pi−1)] + ci+1[(1 − p1)(1 − p2)…(1 − pi−1)(1 − pi)]

≤ ci+1 [(1 − p1)(1 − p2)…(1 − pi−1)] + ci [(1 − p1)(1 − p2)…(1 − pi−1)](1 − pi+1)

(1 − p1)…(1 − pi−1)

ci + ci+1(1 − pi) ≤ ci+1 + ci(1 − pi+1)

⇒ − ci+1pi ≤ − pi+1ci

⇒
ci

pi
≤

ci+1

pi+1

ci

pi
>

ci+1

pi+1
□

W

39

